AD -Classifier: Automatically Assigning Denotation Types to ominalizations

نویسندگان

  • Aina Peris
  • Mariona Taulé
  • Gemma Boleda
  • Horacio Rodríguez
چکیده

This paper presents the ADN-Classifier, an Automatic classification system of Spanish Deverbal Nominalizations aimed at identifying its semantic denotation (i.e. event, result, underspecified, or lexicalized). The classifier can be used for NLP tasks such as coreference resolution or paraphrase detection. To our knowledge, the ADN-Classifier is the first effort in acquisition of denotations for nominalizations using Machine Learning.We compare the results of the classifier when using a decreasing number of Knowledge Sources, namely (1) the complete nominal lexicon (AnCora-Nom) that includes sense distictions, (2) the nominal lexicon (AnCora-Nom) removing the sense-specific information, (3) nominalizations’ context information obtained from a treebank corpus (AnCora-Es) and (4) the combination of the previous linguistic resources. In a realistic scenario, that is, without sense distinction, the best results achieved are those taking into account the information declared in the lexicon (89.40% accuracy). This shows that the lexicon contains crucial information (such as argument structure) that corpus-derived features cannot substitute for.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Methods for the Study of Denotation in Nominalizations in Spanish

This article deals with deverbal nominalizations in Spanish; concretely, we focus on the denotative distinction between event and result nominalizations. The goals of this work is twofold: first, to detect the most relevant features for this denotative distinction; and, second, to build an automatic classification system of deverbal nominalizations according to their denotation. We have based o...

متن کامل

A Two-Stage Classifier with Reject Option for Text Categorisation

In this paper, we investigate the usefulness of the reject option in text categorisation systems. The reject option is introduced by allowing a text classifier to withhold the decision of assigning or not a document to any subset of categories, for which the decision is considered not sufficiently reliable. To automatically handle rejections, a two-stage classifier architecture is used, in whic...

متن کامل

Inducción de Clases de Comportamiento Verbal a partir del Corpus SENSEM

In this paper we present the construction of a classifier with the final objective of automatically assigning subcategorization frames to previously unseen verb senses of Spanish, starting from a generalization of manually annotated frames. Taking as a departure point the data base SENSEM (Fernández et al 2004), the subcategorization frames of 1161 verbal senses have been acquired. These frames...

متن کامل

The Utility of Information Extraction in the Classification of Books

We describe work on automatically assigning classification labels to books using the Library of Congress Classification scheme. This task is non-trivial due to the volume and variety of books that exist. We explore the utility of Information Extraction (IE) techniques within this text categorisation (TC) task, automatically extracting structured information from the full text of books. Experime...

متن کامل

Towards Automatic Argument Diagramming of Multiparty Meetings

This paper focuses on a lesser studied multiparty meetings processing task of argument diagramming. Argument diagramming aims at tagging the utterances and their relationships to represent the flow and structure of reasoning in conversations, especially in discussions and arguments. In this work, we tackle the problem of automatically assigning node types to user utterances using several lexica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010